Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Alzheimers Res Ther ; 15(1): 96, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221560

RESUMO

Carrying the apolipoprotein E (ApoE) Ɛ4 allele is associated with an increased risk of cerebral amyloidosis and late-onset Alzheimer's disease, but the degree to which apoE glycosylation affects its development is not clear. In a previous pilot study, we identified distinct total and secondary isoform-specific cerebral spinal fluid (CSF) apoE glycosylation profiles, with the E4 isoform having the lowest glycosylation percentage (E2 > E3 > E4). In this work, we extend the analysis to a larger cohort of individuals (n = 106), utilizing matched plasma and CSF samples with clinical measures of AD biomarkers. The results confirm the isoform-specific glycosylation of apoE in CSF, resulting from secondary CSF apoE glycosylation patterns. CSF apoE glycosylation percentages positively correlated with CSF Aß42 levels (r = 0.53, p < 0.0001). These correlations were not observed for plasma apoE glycosylation. CSF total and secondary apoE glycosylation percentages also correlated with the concentration of CSF small high-density lipoprotein particles (s-HDL-P), which we have previously shown to be correlated with CSF Aß42 levels and measures of cognitive function. Desialylation of apoE purified from CSF showed reduced Aß42 degradation in microglia with E4 > E3 and increased binding affinity to heparin. These results indicate that apoE glycosylation has a new and important role in influencing brain Aß metabolism and can be a potential target of treatment.


Assuntos
Apolipoproteína E4 , Apolipoproteínas E , Humanos , Glicosilação , Alelos , Projetos Piloto
2.
Front Immunol ; 11: 558036, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178186

RESUMO

Neuroinflammation plays a crucial role in the development and progression of Alzheimer's disease (AD), in which activated microglia are found to be associated with neurodegeneration. However, there is limited evidence showing how neuroinflammation and activated microglia are directly linked to neurodegeneration in vivo. Besides, there are currently no effective anti-inflammatory drugs for AD. In this study, we report on an effective anti-inflammatory lipid, linoleic acid (LA) metabolite docosapentaenoic acid (DPAn-6) treatment of aged humanized EFAD mice with advanced AD pathology. We also report the associations of neuroinflammatory and/or activated microglial markers with neurodegeneration in vivo. First, we found that dietary LA reduced proinflammatory cytokines of IL1-ß, IL-6, as well as mRNA expression of COX2 toward resolving neuroinflammation with an increase of IL-10 in adult AD models E3FAD and E4FAD mice. Brain fatty acid assays showed a five to six-fold increase in DPAn-6 by dietary LA, especially more in E4FAD mice, when compared to standard diet. Thus, we tested DPAn-6 in aged E4FAD mice. After DPAn-6 was administered to the E4FAD mice by oral gavage for three weeks, we found that DPAn-6 reduced microgliosis and mRNA expressions of inflammatory, microglial, and caspase markers. Further, DPAn-6 increased mRNA expressions of ADCYAP1, VGF, and neuronal pentraxin 2 in parallel, all of which were inversely correlated with inflammatory and microglial markers. Finally, both LA and DPAn-6 directly reduced mRNA expression of COX2 in amyloid-beta42 oligomer-challenged BV2 microglial cells. Together, these data indicated that DPAn-6 modulated neuroinflammatory responses toward resolution and improvement of neurodegeneration in the late stages of AD models.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/metabolismo , Imunidade Inata , Doença de Alzheimer/patologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/metabolismo , Doenças Neurodegenerativas
3.
Neurobiol Dis ; 114: 120-128, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501530

RESUMO

Synaptic neurodegeneration is thought to be an early event initiated by soluble ß-amyloid (Aß) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aß aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aß oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4+/+/FAD+/-) relative to E4FAD- (non-carrier; APOE4+/+/FAD-/-) mice, suggesting NP1 is modulated by Aß expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD.


Assuntos
Doença de Alzheimer/sangue , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/sangue , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Biomarcadores/sangue , Encéfalo/patologia , Proteína C-Reativa , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Sinapses/patologia
4.
J Neurosci ; 34(21): 7124-36, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24849348

RESUMO

Hyperphosphorylation and accumulation of tau aggregates are prominent features in tauopathies, including Alzheimer's disease, but the impact of loss of tau function on synaptic and cognitive deficits remains poorly understood. We report that old (19-20 months; OKO) but not middle-aged (8-9 months; MKO) tau knock-out mice develop Morris Water Maze (MWM) deficits and loss of hippocampal acetylated α-tubulin and excitatory synaptic proteins. Mild motor deficits and reduction in tyrosine hydroxylase (TH) in the substantia nigra were present by middle age, but did not affect MWM performance, whereas OKO mice showed MWM deficits paralleling hippocampal deficits. Deletion of tau, a microtubule-associated protein (MAP), resulted in increased levels of MAP1A, MAP1B, and MAP2 in MKO, followed by loss of MAP2 and MAP1B in OKO. Hippocampal synaptic deficits in OKO mice were partially corrected with dietary supplementation with docosahexaenoic acid (DHA) and both MWM and synaptic deficits were fully corrected by combining DHA with α-lipoic acid (ALA), which also prevented TH loss. DHA or DHA/ALA restored phosphorylated and total GSK3ß and attenuated hyperactivation of the tau C-Jun N-terminal kinases (JNKs) while increasing MAP1B, dephosphorylated (active) MAP2, and acetylated α-tubulin, suggesting improved microtubule stability and maintenance of active compensatory MAPs. Our results implicate the loss of MAP function in age-associated hippocampal deficits and identify a safe dietary intervention, rescuing both MAP function and TH in OKO mice. Therefore, in addition to microtubule-stabilizing therapeutic drugs, preserving or restoring compensatory MAP function may be a useful new prevention strategy.


Assuntos
Envelhecimento/patologia , Hipocampo/patologia , Aprendizagem em Labirinto/fisiologia , Sinapses/metabolismo , Proteínas tau/deficiência , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/efeitos dos fármacos , Deficiências da Aprendizagem/dietoterapia , Deficiências da Aprendizagem/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/dietoterapia , Transtornos dos Movimentos/etiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Sinapses/efeitos dos fármacos , Sinapses/genética , Ácido Tióctico/administração & dosagem
5.
J Biol Chem ; 288(6): 4056-65, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23264626

RESUMO

The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Comportamento Animal/efeitos dos fármacos , Curcumina/farmacologia , Proteínas de Choque Térmico/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sinapses/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína 4 Homóloga a Disks-Large , Feminino , Proteínas de Choque Térmico/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Multimerização Proteica/genética , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Solubilidade/efeitos dos fármacos , Sinapses/genética , Sinapses/patologia , Tauopatias/tratamento farmacológico , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
6.
Cell Logist ; 2(2): 117-125, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23162743

RESUMO

Developmental cognitive deficits including X-linked mental retardation (XLMR) can be caused by mutations in P21-activated kinase 3 (PAK3) that disrupt actin dynamics in dendritic spines. Neurodegenerative diseases such as Alzheimer disease (AD), where both PAK1 and PAK3 are dysregulated, may share final common pathways with XLMR. Independent of familial mutation, cognitive deficits emerging with aging, notably AD, begin after decades of normal function. This prolonged prodromal period involves the buildup of amyloid-ß (Aß) extracellular plaques and intraneuronal neurofibrillary tangles (NFT). Subsequently region dependent deficits in synapses, dendritic spines and cognition coincide with dysregulation in PAK1 and PAK. Specifically proximal to decline, cytoplasmic levels of actin-regulating Rho GTPase and PAK1 kinase are decreased in moderate to severe AD, while aberrant activation and translocation of PAK1 appears around the onset of cognitive deficits. Downstream to PAK1, LIM kinase inactivates cofilin, contributing to cofilin pathology, while the activation of Rho-dependent kinase ROCK increases Aß production. Aß activation of fyn disrupts neuronal PAK1 and ROCK-mediated signaling, resulting in synaptic deficits. Reductions in PAK1 by the anti-amyloid compound curcumin suppress synaptotoxicity. Similarly other neurological disorders, including Huntington disease (HD) show dysregulation of PAKs. PAK1 modulates mutant huntingtin toxicity by enhancing huntingtin aggregation, and inhibition of PAK activity protects HD as well as fragile X syndrome (FXS) symptoms. Since PAK plays critical roles in learning and memory and is disrupted in many cognitive disorders, targeting PAK signaling in AD, HD and XLMR may be a novel common therapeutic target for AD, HD and XLMR.

7.
J Neural Transm (Vienna) ; 118(8): 1155-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21331461

RESUMO

Although abnormal aggregation of α-synuclein (α-syn) is involved in several neurodegenerative diseases, its biological functions remain poorly understood, which limits our understanding of its pathogenic mechanisms. α-Syn exhibits MAP-like activity and promotes the assembly of microtubules. Since microtubules play a pivotal role in proliferative cell division, it is possible that α-syn affects cell proliferation by facilitating microtubule assembly. The role of α-syn in promoting cell proliferation was reported previously in PC12 dopaminergic cells overexpressing α-syn. Here, we extended this study aiming at finding the association between the cell proliferation effect of α-syn and its microtubule assembly activity, and identifying the potential active domain for the effect of α-syn on cell proliferation. By exploiting the property that the 11-mer repeats of synuclein molecules are able to mediate a rapid intracellular translocation of these proteins across the plasma membrane without being degraded by the cellular proteolytic system, we added recombinant full-length α-syn (wild type and A53T and A30P mutants) and ß-syn to the culture medium of MES23.5 dopaminergic cells, and observed their intracellular translocation, subcellular distribution and effects on cell proliferation. We found that all the synuclein molecules could enter the cells where they were localized in both the cytoplasm and nucleus. However, only the wild-type α-syn, which had been shown to have microtubule assembly activity, was able to promote proliferation of the MES23.5 cells. The A53T and A30P mutant α-syn as well as ß-syn, which had been proved not to possess microtubule assembly activity, did not exhibit any effect on cell proliferation. Since the α-syn activity in microtubule assembly was shown to be related to its specific functional domain, we then generated different functional fragments (N-terminal aa1-65, NAC aa61-95 and C-terminal aa96-140) and tested their activities in cell proliferation. We showed that all the α-syn fragments could enter the cells, but with different subcellular localizations. The N-terminal and NAC fragments were localized in the cytoplasm and the C-terminal fragment mainly in the nucleus. In accordance with the activity for the C-terminal part of α-syn in microtubule assembly, only the NAC and C-terminal fragments exhibited the activity in cell proliferation. The N-terminal fragment without microtubule assembly activity did not promote cell proliferation. The above results suggest that the α-syn function in promoting cell proliferation is associated with its microtubule assembly activity with the functional domain localized in its C-terminal part.


Assuntos
Proliferação de Células , Neurônios Dopaminérgicos/fisiologia , alfa-Sinucleína/química , alfa-Sinucleína/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Microtúbulos/química , Microtúbulos/fisiologia , Estrutura Terciária de Proteína/fisiologia
8.
Nutr Rev ; 68 Suppl 2: S102-11, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21091943

RESUMO

Aging contributes to physiological decline and vulnerability to disease. In the brain, even with minimal neuronal loss, aging increases oxidative damage, inflammation, demyelination, impaired processing, and metabolic deficits, particularly during pathological brain aging. In this review, the possible role of docosahexaenoic acid (DHA) in the prevention of age-related disruption of brain function is discussed. High-fat diabetogenic diets, cholesterol, and the omega-6 fatty acid arachidonate and its prostaglandin metabolites have all been implicated in promoting the pathogenesis of Alzheimer's disease. Evidence presented here shows DHA acts to oppose this, exerting a plethora of pleiotropic activities to protect against the pathogenesis of Alzheimer's disease.


Assuntos
Envelhecimento/fisiologia , Encéfalo/efeitos dos fármacos , Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Idoso , Envelhecimento/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Demência/metabolismo , Demência/prevenção & controle , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Humanos
9.
J Neurosci ; 29(28): 9078-89, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19605645

RESUMO

Both insulin resistance (type II diabetes) and beta-amyloid (Abeta) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Abeta oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Abeta oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Abeta oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Curcumina/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal , Células Cultivadas , Curcumina/uso terapêutico , Modelos Animais de Doenças , Embrião de Mamíferos , Inibidores Enzimáticos/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Hipocampo/citologia , Humanos , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Mudanças Depois da Morte , Presenilina-1/genética , Ratos , Ratos Sprague-Dawley , Serina/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-19523795

RESUMO

More than a dozen epidemiological studies have reported that reduced levels or intake of omega-3 fatty acids or fish consumption is associated with increased risk for age-related cognitive decline or dementia such as Alzheimer's disease (AD). Increased dietary consumption or blood levels of docosahexaenoic acid (DHA) appear protective for AD and other dementia in multiple epidemiological studies; however, three studies suggest that the ApoE4 genotype limits protection. DHA is broadly neuroprotective via multiple mechanisms that include neuroprotective DHA metabolites, reduced arachidonic acid metabolites, and increased trophic factors or downstream trophic signal transduction. DHA is also protective against several risk factors for dementia including head trauma, diabetes, and cardiovascular disease. DHA is specifically protective against AD via additional mechanisms: It limits the production and accumulation of the amyloid beta peptide toxin that is widely believed to drive the disease; and it also suppresses several signal transduction pathways induced by Abeta, including two major kinases that phosphorylate the microtubule-associated protein tau and promote neurofibrillary tangle pathology. Based on the epidemiological and basic research data, expert panels have recommended the need for clinical trials with omega-3 fatty acids, notably DHA, for the prevention or treatment of age-related cognitive decline--with a focus on the most prevalent cause, AD. Clinical trials are underway to prevent and treat AD. Results to-date suggest that DHA may be more effective if it is begun early or used in conjunction with antioxidants.


Assuntos
Ácidos Graxos Ômega-3/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/tratamento farmacológico , Animais , Antioxidantes/uso terapêutico , Ensaios Clínicos como Assunto , Transtornos Cognitivos/prevenção & controle , Demência/tratamento farmacológico , Demência/prevenção & controle , Dieta , Humanos , Masculino , Pessoa de Meia-Idade , Fármacos Neuroprotetores/uso terapêutico , Risco , Proteínas tau/antagonistas & inibidores
11.
Arch Neurol ; 66(4): 448-57, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19364929

RESUMO

BACKGROUND: The sortilin-related receptor SorLA/LR11 (LR11) is a transmembrane neuronal sorting protein that reduces beta-amyloid precursor protein trafficking to secretases, notably BACE1 that generates beta-amyloid, the principal component of senile plaques in Alzheimer disease (AD). LR11 protein is reduced in patients with late-onset AD, and LR11 polymorphisms have been associated with late-onset AD. OBJECTIVE: T o detect soluble LR11 and APP in cerebrospinal fluid (CSF) from patients with AD and control subjects, as (like beta-amyloid precursor protein) LR11 is cleaved near the membrane to release a large N-terminal fragment that is secreted to media from cultured cells. DESIGN: Case-control study. SETTING: Academic research. PARTICIPANTS: Patients with AD and control subjects. MAIN OUTCOME MEASURES: We evaluated CSF LR11, beta-amyloid precursor protein, and apolipoprotein E levels by Western blot in lumbar and postmortem CSF samples. RESULTS: LR11 levels were detectable and stable during 6 months in the CSF of patients with AD. LR11 levels were significantly reduced in lumbar samples from patients with mild to moderate probable AD, as well as in ventricular CSF from patients with autopsy-confirmed AD (predominantly Braak stage III-IV). Bivariate analysis with beta-amyloid 42 and LR11 levels improved diagnostic specificity for AD. Reduced LR11 levels are significantly correlated with soluble beta-amyloid precursor protein but not apolipoprotein E levels. CONCLUSION: Reduced LR11 levels in CSF of patients with AD may have potential as a diagnostic biomarker for patients with LR11 deficits that promote beta-amyloid production or as an index of therapeutic response in late-onset AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/líquido cefalorraquidiano , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/líquido cefalorraquidiano , Proteínas de Membrana Transportadoras/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Apolipoproteínas E/líquido cefalorraquidiano , Western Blotting , Encéfalo/patologia , Estudos de Casos e Controles , Linhagem Celular , Regulação da Expressão Gênica/genética , Humanos , Emaranhados Neurofibrilares/patologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Placa Amiloide/patologia , Valor Preditivo dos Testes , Valores de Referência
12.
Yi Chuan ; 31(3): 320-4, 2009 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-19273447

RESUMO

Textbook is an important tool for generating knowledge and is closely related to the teaching effect. Now the multimedia teaching method has become the common norm in teaching process of higher education. This paper describes the compilation of different forms of "Genetics" multimedia textbook, the selection of contents and knowledge, the arrangement of knowledge module and systematic configuration. The characteristics of compiling process of multimedia textbook are also discussed.


Assuntos
Genética/educação , Multimídia , Ensino/métodos , Livros de Texto como Assunto
13.
J Biol Chem ; 283(20): 14132-43, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18347024

RESUMO

Defects in dendritic spines and synapses contribute to cognitive deficits in mental retardation syndromes and, potentially, Alzheimer disease. p21-activated kinases (PAKs) regulate actin filaments and morphogenesis of dendritic spines regulated by the Rho family GTPases Rac and Cdc42. We previously reported that active PAK was markedly reduced in Alzheimer disease cytosol, accompanied by downstream loss of the spine actin-regulatory protein Drebrin. beta-Amyloid (Abeta) oligomer was implicated in PAK defects. Here we demonstrate that PAK is aberrantly activated and translocated from cytosol to membrane in Alzheimer disease brain and in 22-month-old Tg2576 transgenic mice with Alzheimer disease. This active PAK coimmunoprecipitated with the small GTPase Rac and both translocated to granules. Abeta42 oligomer treatment of cultured hippocampal neurons induced similar effects, accompanied by reduction of dendrites that were protected by kinase-active but not kinase-dead PAK. Abeta42 oligomer treatment also significantly reduced N-methyl-d-aspartic acid receptor subunit NR2B phosphotyrosine labeling. The Src family tyrosine kinase inhibitor PP2 significantly blocked the PAK/Rac translocation but not the loss of p-NR2B in Abeta42 oligomer-treated neurons. Src family kinases are known to phosphorylate the Rac activator Tiam1, which has recently been shown to be Abeta-responsive. In addition, anti-oligomer curcumin comparatively suppressed PAK translocation in aged Tg2576 transgenic mice with Alzheimer amyloid pathology and in Abeta42 oligomer-treated cultured hippocampal neurons. Our results implicate aberrant PAK in Abeta oligomer-induced signaling and synaptic deficits in Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Quinases Ativadas por p21/química , Peptídeos beta-Amiloides/química , Animais , Citosol/metabolismo , GTP Fosfo-Hidrolases/química , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neurônios/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Proteínas rac de Ligação ao GTP/metabolismo
14.
J Neurosci ; 27(52): 14299-307, 2007 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18160637

RESUMO

Environmental and genetic factors, notably ApoE4, contribute to the etiology of late-onset Alzheimer's disease (LOAD). Reduced mRNA and protein for an apolipoprotein E (ApoE) receptor family member, SorLA (LR11) has been found in LOAD but not early-onset AD, suggesting that LR11 loss is not secondary to pathology. LR11 is a neuronal sorting protein that reduces amyloid precursor protein (APP) trafficking to secretases that generate beta-amyloid (Abeta). Genetic polymorphisms that reduce LR11 expression are associated with increased AD risk. However these polymorphisms account for only a fraction of cases with LR11 deficits, suggesting involvement of environmental factors. Because lipoprotein receptors are typically lipid-regulated, we postulated that LR11 is regulated by docosahexaenoic acid (DHA), an essential omega-3 fatty acid related to reduced AD risk and reduced Abeta accumulation. In this study, we report that DHA significantly increases LR11 in multiple systems, including primary rat neurons, aged non-Tg mice and an aged DHA-depleted APPsw AD mouse model. DHA also increased LR11 in a human neuronal line. In vivo elevation of LR11 was also observed with dietary fish oil in young rats with insulin resistance, a model for type II diabetes, another AD risk factor. These data argue that DHA induction of LR11 does not require DHA-depleting diets and is not age dependent. Because reduced LR11 is known to increase Abeta production and may be a significant genetic cause of LOAD, our results indicate that DHA increases in SorLA/LR11 levels may play an important role in preventing LOAD.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Receptores de LDL/metabolismo , Fatores Etários , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma , Ratos , Ratos Sprague-Dawley , Receptores de LDL/genética , Fatores de Tempo
15.
J Neurochem ; 103(4): 1594-607, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17760871

RESUMO

Extracellular-signal regulated kinase (ERK) signaling is critical for memory and tightly regulated by acute environmental stimuli. In Alzheimer disease transgenic models, active ERK is shown to first be increased, then later reduced, but whether these baseline changes reflect disruptions in ERK signaling is less clear. We investigated the influence of the familial Alzheimer's disease transgene APPsw and beta-amyloid peptide (Abeta) immunoneutralization on cannulation injury-associated (i.c.v. infusion) ERK activation. At both 12 and 22 months of age, the trauma-associated activation of ERK observed in Tg(-) mice was dramatically attenuated in Tg(+). In cortices of 22-month-old non-infused mice, a reduction in ERK activation was observed in Tg(+), relative to Tg(-) mice. Intracerebroventricular (i.c.v.) anti-Abeta infusion significantly increased phosphorylated ERK, its substrate cAMP-response element-binding protein (CREB) and a downstream target, the NMDA receptor subunit. We also demonstrated that Abeta oligomer decreased active ERK and subsequently active CREB in human neuroblastoma cells, which could be prevented by oligomer immunoneutralization. Abeta oligomers also inhibited active ERK and CREB in primary neurons, in addition to reducing the downstream post-synaptic protein NMDA receptor subunit. These effects were reversed by anti-oligomer. Our data strongly support the existence of an APPsw transgene-dependent and Abeta oligomer-mediated defect in regulation of ERK activation.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/fisiologia , Proteína de Ligação a CREB/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Transgenes/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Proteína de Ligação a CREB/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Camundongos , Camundongos Transgênicos
16.
Yi Chuan ; 28(8): 984-8, 2006 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-16870586

RESUMO

Multimedia as a pedagogical tool has been widely adopted for improving the quality of teaching. This paper describes the construction of a teaching software package based on the characteristics of the "Genetics" course. It also discusses some particulars of multimedia teaching, the collection of teaching materials, the improvement of teaching effects, and the compilation of a multimedia textbook. How to enhance the quality of the teachers as well as the motivation of the students are also discussed.


Assuntos
Genética/educação , Multimídia , Software , China , Instrução por Computador , Humanos , Ensino
17.
Nat Neurosci ; 9(2): 234-42, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415866

RESUMO

Defects in dendritic spines are common to several forms of cognitive deficits, including mental retardation and Alzheimer disease. Because mutation of p21-activated kinase (PAK) can lead to mental retardation and because PAK-cofilin signaling is critical in dendritic spine morphogenesis and actin dynamics, we hypothesized that the PAK pathway is involved in synaptic and cognitive deficits in Alzheimer disease. Here, we show that PAK and its activity are markedly reduced in Alzheimer disease and that this is accompanied by reduced and redistributed phosphoPAK, prominent cofilin pathology and downstream loss of the spine actin-regulatory protein drebrin, which cofilin removes from actin. We found that beta-amyloid (Abeta) was directly involved in PAK signaling deficits and drebrin loss in Abeta oligomer-treated hippocampal neurons and in the Appswe transgenic mouse model bearing a double mutation leading to higher Abeta production. In addition, pharmacological PAK inhibition in adult mice was sufficient to cause similar cofilin pathology, drebrin loss and memory impairment, consistent with a potential causal role of PAK defects in cognitive deficits in Alzheimer disease.


Assuntos
Doença de Alzheimer/enzimologia , Peptídeos beta-Amiloides/metabolismo , Transtornos Cognitivos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Animais , Células Cultivadas , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Ratos , Quinases Ativadas por p21
18.
J Neurosci Res ; 83(3): 374-84, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16385556

RESUMO

Although active and passive immunization against the beta-amyloid peptide (Abeta) of amyloid plaque-bearing transgenic mice markedly reduces amyloid plaque deposition and improves cognition, the mechanisms of neuroprotection and impact on toxic oligomer species are not understood. We demonstrate that compared to control IgG2b, passive immunization with intracerebroventricular (icv) anti-Abeta (1-15) antibody into the AD HuAPPsw (Tg2576) transgenic mouse model reduced specific oligomeric forms of Abeta, including the dodecamers that correlate with cognitive decline. Interestingly, the reduction of soluble Abeta oligomers, but not insoluble Abeta, significantly correlated with reduced tau phosphorylation by glycogen synthase kinase-3beta (GSK-3beta), a major tau kinase implicated previously in mediating Abeta toxicity. A conformationally-directed antibody against amyloid oligomers (larger than tetramer) also reduced Abeta oligomer-induced activation of GSK3beta and protected human neuronal SH-SY5Y cells from Abeta oligomer-induced neurotoxicity, supporting a role for Abeta oligomers in human tau kinase activation. These data suggest that antibodies that are highly specific for toxic oligomer subspecies may reduce toxicity via reduction of GSK-3beta, which could be an important strategy for Alzheimer's disease (AD) therapeutics.


Assuntos
Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Anticorpos/farmacologia , Reativadores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Western Blotting/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ativação Enzimática/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Imuno-Histoquímica/métodos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Neuroblastoma , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Placa Amiloide/patologia , Distribuição Aleatória , Coloração pela Prata/métodos
19.
Yi Chuan ; 27(6): 980-3, 2005 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-16378949

RESUMO

"Genetics" is one of the main courses for the study scheme of undergraduate students in university. This paper pointed out some problems found in the teaching process according to the characteristics of "Genetics" course. At the same time, the thought on the construction of "Genetics" course were discussed concerning the reform of course contents, the improvement of teaching method, the creation of teaching CAI (computer assisted instruction), the compile of electronic edition for teaching materials, the evaluation of teaching level, the innovation of experimental contents and the methods for improving the teaching effect.


Assuntos
Genética/educação , Ensino/métodos , Instrução por Computador , Educação de Graduação em Medicina , Avaliação Educacional , Humanos
20.
Neurosci Lett ; 388(1): 17-20, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16043284

RESUMO

There is a compelling body of evidence indicating an association between cholesterol and Alzheimer's disease (AD). Acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1), an endoplasmic-reticulum-resident enzyme that catalyses the formation of cholesteryl esters (CEs) from cholesterol and long-chain fatty acids, modulates the generation of beta amyloid peptide (Abeta). A single nucleotide polymorphism rs1044925 in the sterol O-acyltransferase 1 (SOAT1), the gene encoding ACAT1, has been reported to be association with an increased risk for sporadic AD (SAD) in European population. In the present study, we examined the association of the SOAT1 rs1044925 polymorphism with SAD in our northern Han-Chinese (107 cases, 118 age and gender-matched controls) sample using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. There was no genotypic (chi(2)=0.030, OR 0.942, 95% CI=0.478-1.857) or allelic (chi(2)=0.021, OR 0.955, 95% CI=0.508-1.794) association between SAD and controls, even when the data were stratified by APOEvarepsilon4 carrier status. Our results indicate that the polymorphism rs1044925 in the 3'UTR of SOAT1 gene does not affect the risk of SAD in the northern Han-Chinese.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Encéfalo/enzimologia , Predisposição Genética para Doença/genética , Polimorfismo Genético/genética , Esterol O-Aciltransferase/genética , Regiões 3' não Traduzidas/genética , Idoso , Doença de Alzheimer/etnologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4 , Apolipoproteínas E/genética , Povo Asiático/genética , Encéfalo/fisiopatologia , China/etnologia , Colesterol/metabolismo , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Frequência do Gene , Testes Genéticos , Genótipo , Humanos , Estudos Longitudinais , Masculino , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...